Abstract

Conformational changes of enzyme proteins are often coupled with a catalytic reaction and modulate the enzyme activity. Single-molecule technology is a powerful tool to study the mechanism of enzyme catalysis in these complicated cases. However, the chemical reaction cycles and conformational changes could not be monitored simultaneously in a single-molecule detection experiment, resulting in some unresolved key kinetic parameters. Here, we describe a method to extract all of the kinetic parameters from comprehensive single-molecule FRET (smFRET) measurements and model analysis. On the basis of the smFRET, we calculated the undetectable parameters by solving the rate equations of the kinetic model with the input of the smFRET-measured conformational state populations and state-transition rate constants. A case study of MalK2 ATPase demonstrates that this method could reveal the quantitative mechanism of the catalytic reaction of the enzyme as well as its coupled conformational dynamics. The strategy employed in this study could be widely applied to investigate the conformational fluctuation-coupled catalysis of other enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.