Abstract

Multipath holographic interference in strong-field quantum tunnel ionization is key to revealing sub-Angstrom attosecond dynamics for molecular movies. This critical sub-cycle motion is often obscured by longer time-scale effects such as ring-shaped patterns that appear in above-threshold ionization (ATI). In the present work, we overcome this problem by combining two novel techniques in theory and experimental analysis: unit-cell averaging and time-filtering data and simulations. Together these suppress ATI rings and enable an unprecedented highly-detailed quantitative match between strong-field ionization experiments in argon and the Coulomb-quantum orbit strong-field approximation (CQSFA) theory. Velocity map images reveal fine modulations on the holographic spider-like interference fringes that form near the polarization axis. CQSFA theory traces this to the interference of three types of electron pathways. The level of agreement between experiment and theory allows sensitive determination of quantum phase differences and symmetries, providing an important tool for quantitative dynamical imaging in quantum systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call