Abstract

Phytohormones are chemical messengers that play a leading role in regulating the vital activity of plants, including transcription, posttranscriptional pre-mRNA splicing, translation, and posttranslational modifications by interacting with specific protein receptors. Plant hormones are synthesized in one tissue and act on specific target sites in other tissues at vanishingly low concentrations. High salinity is one of the main factors limiting Arabidopsis growth and productivity. In this study, phytohormones including abscisic acid, auxin, ethylene, and cytokinin responsive genes regulating salinity stress in Arabidopsis roots were monitored using microarray data. We identified phytohormone responsive genes on the basis of their expression pattern at genomic level at various time points. Using publicly available microarray data, we analyzed the effect of salt stress on the transcription of phytohormone responsive genes. Gene ontology (GO) analysis of phytohormone responsive genes showed their role in important biological processes such as signal transduction, hormone metabolism, biosynthetic process, and gene expression. Gene enrichment terms also reveal that transcription regulator activity is the main class of ABA responsive genes under salinity stress. We conclude that expression of ABA responsive genes involves induction of several transcription factors under salt stress treatment in Arabidopsis roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.