Abstract
Here, we describe a detailed protocol, based on laser ablation and fluorescence optical microscopy, to measure the microtubule organization in spindles, including microtubule length distribution, polarity, and plus and minus end densities. The method uses the asymmetry in microtubule depolymerization after a cut, where the newly created microtubule plus ends depolymerize all the way to the minus ends, whereas the newly created minus ends remain stable. The protocol described in this chapter is optimized for spindles, but can be easily applied to any microtubule-based structure. The chapter is divided into two parts. First, we provide the theoretical basis for the method. Second, we describe in detail all steps necessary to reconstruct the microtubule organization of a spindle assembled in Xenopus laevis egg extract. Compared to electron microscopy, which in theory can resolve individual microtubules in spindles and provide similar structural information, our method is fast and simple enough to allow for a full quantitative reconstruction of the microtubule organization of several X. laevis spindles—which have volumes tens of thousands of times larger than spindles whose structures have been previously solved by electron microscopy—in a single experimental session, as well as to explore how the architecture of these structures changes in response to biochemical perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.