Abstract
The spatiotemporal control of tissue-specific gene expression is coordinated by cis-regulatory elements (CREs) and associated trans-acting factors. Despite major advances in genome-wide annotation of candidate CREs, the in situ regulatory composition of the vast majority of CREs remain unknown. To address this challenge, we developed the CRISPR affinity purification in situ of regulatory elements (CAPTURE) toolbox that employs an in vivo biotinylated nuclease-deficient Cas9 (dCas9) protein and programmable single-guide RNAs (sgRNAs) to identify CRE-associated macromolecular complexes and chromatin looping. In this chapter, we provide a detailed protocol for implementing the latest iteration of the CRISPR-based CAPTURE methods to interrogate the molecular composition of locus-specific chromatin complexes and configuration in a mammalian genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.