Abstract
The most rapidly evolving regions of galaxies often display complex optical spectra with emission lines excited by massive stars, shocks and accretion onto supermassive black holes. Standard calibrations (such as for the star formation rate) cannot be applied to such mixed spectra. In this paper we isolate the contributions of star formation, shock excitation and active galactic nucleus (AGN) activity to the emission line luminosities of individual spatially resolved regions across the central 3 $\times$ 3 kpc$^2$ region of the active barred spiral galaxy NGC$\sim$613. The star formation rate and AGN luminosity calculated from the decomposed emission line maps are in close agreement with independent estimates from data at other wavelengths. The star formation component traces the B-band stellar continuum emission, and the AGN component forms an ionization cone which is aligned with the nuclear radio jet. The optical line emission associated with shock excitation is cospatial with strong $H_2$ and [Fe II] emission and with regions of high ionized gas velocity dispersion ($\sigma > 100$ km s$^{-1}$). The shock component also traces the outer boundary of the AGN ionization cone and may therefore be produced by outflowing material interacting with the surrounding interstellar medium. Our decomposition method makes it possible to determine the properties of star formation, shock excitation and AGN activity from optical spectra, without contamination from other ionization mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.