Abstract
Fragile X mental retardation protein (FMRP) is an mRNA-binding protein that regulates local protein translation. FMRP loss or dysfunction leads to aberrant neuronal and synaptic activities in fragile X syndrome (FXS), which is characterized by intellectual disability, sensory abnormalities, and social communication problems. Studies of FMRP function and FXS pathogenesis have primarily been conducted with Fmr1 (the gene encoding FMRP) knockout in transgenic animals. Here we report an in vivo method for determining the cell-autonomous function of FMRP during the period of circuit assembly and synaptic formation using chicken embryos. This method employs stage-, site-, and direction-specific electroporation of a drug-inducible vector system containing Fmr1 small hairpin RNA (shRNA) and an EGFP reporter. With this method, we achieved selective FMRP knockdown in the auditory ganglion (AG) and in one of its brainstem targets, the nucleus magnocellularis (NM), thus providing a component-specific manipulation within the AG-NM circuit. Additionally, the mosaic pattern of the transfection allows within-animal controls and neighboring neuron/fiber comparisons for enhanced reliability and sensitivity in data analyzing. The inducible vector system provides temporal control of gene editing onset to minimize accumulating developmental effects. The combination of these strategies provides an innovative tool to dissect the cell-autonomous function of FMRP in synaptic and circuit development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.