Abstract

We develop formalisms for a network of vector sensors, sensitive to certain spatial components of the signals, to identify the properties of a light axion or a dark photon background. These bosonic fields contribute to vector-like signals in the detectors, including effective magnetic fields triggering the spin precession, effective electric currents in a shielded room, and forces on the matter. The interplay between a pair of vector sensors and a baseline that separates them can potentially uncover rich information of the bosons, including angular distribution, polarization modes, source localization, and macroscopic circular polarization. Using such a network, one can identify the microscopic nature of a potential signal, such as distinguishing between the axion-fermion coupling and the dipole couplings with the dark photon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.