Abstract

Intramolecular secondary structures within templates have been shown to lower PCR performance. Whereas many approaches have been developed to mitigate such impairment on PCR, their effects can vary greatly depending on template sequences. Here we present a novel, universally effective approach to improve PCR performance involving specifically designed oligonucleotides called disruptors. A disruptor contained three functional components, an anchor designed to initiate template binding, an effector to disrupt intramolecular secondary structure, and a 3’ blocker to prevent its elongation by DNA polymerase. A functional mechanism for a disruptor to improve PCR efficiency was proposed where anchor first binds to template followed by effector-mediated strand displacement to unwind intramolecular secondary structure. Such a mechanism was consistent with the observation that anchor played a more critical role for disruptor function. As an example of potential disruptor applications, inverted terminal repeat sequences of recombinant adeno-associated virus vectors were successfully amplified in the presence of disruptors despite their well-known reputation as some of the most difficult templates for PCR amplification and Sanger sequencing due to their ultra-stable T-shaped hairpin structures. In stark contrast, both DMSO and betaine, two PCR additives routinely used to facilitate PCR amplification and Sanger sequencing of GC-rich templates, did not demonstrate any improving effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.