Abstract

Despite the importance of vagal control over the ventricle, little is known regarding vagal efferent conduction and nerve terminal function in the postischemic myocardium. To elucidate postischemic changes in the cardiac vagal efferent neuronal function, we measured myocardial interstitial acetylcholine (ACh) levels by using in vivo cardiac microdialysis and examined the ACh responses to electrical stimulation of the vagi or local administration of ouabain in anesthetized cats. Sixty-minute occlusions of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion abolished electrical stimulation-induced ACh release (20.4 +/- 3.9 vs. 0.9 +/- 0.4 nmol/l; means +/- SE, P < 0.01). In different groups of animals, 60-min LAD occlusion followed by 60-min reperfusion decreased but did not completely abolish ouabain-induced release of ACh (9.2 +/- 1.8 vs. 3.9 +/- 0.7 nmol/l; P < 0.05). These results indicate that function of the vagal efferent axon was completely interrupted, whereas the local ACh release was partially suppressed in the postischemic myocardium. The postischemic disruption of vagal efferent neuronal function might exert deleterious effects on cardiac regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.