Abstract

Penicillium oxalicum can secrete numerous of plant biomass-degrading enzymes, but limited information is available regarding the mechanisms associated with their secretion. In the Golgi-to-vacuole pathway, the type I transmembrane receptor Vps10p is involved in the sorting of the soluble vacuolar proteins and can also target recombinant and aberrant proteins from the Golgi to the vacuole for degradation. Here, we used the combination of phenotypic characterization and comparative secretome analysis to explore the effect of disruption of the vps10 gene in P. oxalicum (Poxvps10) on endogenous cellulolytic enzyme secretion. The study found that PoxVps10p is required for the targeting and delivery of vacuolar PoxCpyA to the vacuole in P. oxalicum. Poxvps10p deletion enhances extracellular protein and cellulase production by P. oxalicum when the cells are grown on a cellulosic substrate (wheat bran and Avicel). Furthermore, secretome analysis revealed higher relative amount of cellulases, lytic polysaccharide monooxygenase and post-translational modification-related proteins in the ΔPoxvps10 mutant than in the wild-type (WT) strain, which may explain the higher cellulase production by the ΔPoxvps10 than the WT strain. This study thus provides a new target for manipulating the secretory pathway to enhance the cellulolytic enzyme production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call