Abstract
Anaphylaxis is a severe systemic allergic reaction which is rapid in onset and potentially fatal, caused by excessive release of mediators including histamine and cytokines/chemokines from mast cells and basophils upon allergen/IgE stimulation. Increased prevalence of anaphylaxis in industrialized countries requires urgent needs for better understanding of anaphylaxis. However, the pathophysiology of the disease is not fully understood. Here we report that the circadian clock may be an important regulator of anaphylaxis. In mammals, the central clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes and entrains peripheral circadian clock present in virtually all cell types via neural and endocrine pathways, thereby driving the daily rhythms in behavior and physiology. We found that mechanical disruption of the SCN resulted in the absence of a time of day-dependent variation in passive systemic anaphylactic (PSA) reaction in mice, associated with loss of daily variations in serum histamine, MCP-1 (CCL2), and IL-6 levels. These results suggest that the central SCN clock controls the time of day-dependent variation in IgE-mediated systemic anaphylactic reaction, which may provide a novel insight into the pathophysiology of anaphylaxis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.