Abstract
The present study tested the hypothesis that disruption of Smad7 function may accelerate renal fibrosis and inflammation. This was investigated in a unilateral ureteral obstruction (UUO) model induced in wild-type (WT) and Smad7DeltaE1 mice in which functional Smad7 is disrupted by deleting exon I in the Smad7 gene. Renal fibrosis and inflammation after UUO were examined by histology, real-time PCR, western blot analyses and immunohistochemistry. Seven days after UUO, severe tubulointerstitial fibrosis developed in WT mice as evidenced by a marked increase in alpha-SMA, collagen I and III extracellular matrix. This was associated with a significant upregulation of renal TGF-beta1 and CTGF and activation of Smad2/3. Interestingly, compared to WT UUO mice, Smad7DeltaE1 mice with UUO exhibited a further increase in TGF-beta/Smad2/3-dependent renal fibrosis. Moreover, compared to WT UUO mice, deletion of the Smad7 gene also sustained NF-kappaB activation and thus enhanced further renal inflammation such as macrophage infiltration and upregulation of TNF-alpha, MCP-1, OPN and ICAM-1. Smad7 is a critical negative regulator of TGF-beta/Smad2/3 and NF-kappaB signalling and plays a negative regulating role in both renal fibrosis and inflammation after UUO. Results from this study further support the notion that Smad7 may be a therapeutic agent for kidney diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.