Abstract

To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament light (NF-L) and neurofilament medium (NF-M) subunits. However, our analysis of NF-H knockout mice revealed an approximately 2.4-fold increase of microtubule density in their large ventral root axons. This finding was further corroborated by a corresponding increase in the ratio of assembled tubulin to NF-L protein in insoluble cytoskeletal preparations from the sciatic nerve. Axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed an increased transport velocity of newly synthesized NF-L and NF-M proteins in motor axons of NF-H knockout mice. When treated with beta,beta'-iminodipropionitrile (IDPN), a neurotoxin that segregates microtubules and retards neurofilament transport, mice heterozygous or homozygous for the NF-H null mutation did not develop neurofilamentous swellings in motor neurons, unlike normal mouse littermates. These results indicate that the NF-H subunit is a key mediator of IDPN-induced axonopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call