Abstract

AbstractThe major platelet integrin αIIbβ3, also known as the platelet glycoprotein (GP) IIb-IIIa complex, mediates platelet aggregation by serving as the receptor for fibrinogen and von Willebrand factor. In addition to its physiologic role, GPIIb-IIIa also bears a number of clinically important alloantigenic determinants. Previous studies have shown that disruption of the long-range Cys5-Cys435 disulfide bond of the β3 subunit results in the production of isoforms that bind some, but not all, anti-PlA1 alloantibodies, suggesting that mutations in this so-called long-range disulfide bond can alter the conformation of GPIIIa. The purpose of this study was to examine the effects of either the Cys5Ala or Cys435Ala substitution of GPIIIa on the adhesive properties of the GPIIb-IIIa complex. We found that both Ala5GPIIIa and Ala435GPIIIa were capable of associating with GPIIb and were expressed normally on the cell surface when cotransfected into Chinese hamster ovary (CHO) cells. CHO cells expressing GPIIb-Ala5GPIIIa or GPIIb-Ala435IIIa bound well-characterized, conformationally sensitive ligand-induced binding site (LIBS) antibodies, and were capable of constitutively binding the fibrinogen-mimetic monoclonal antibodies Pl-55 and PAC-1, as well as soluble fibrinogen. Both GPIIb-Ala5IIIa– and GPIIb-Ala435IIIa–transfected CHO cells also bound more avidly to immobilized fibrinogen and were capable of mediating the tyrosine phosphorylation of pp125FAK on cell adhesion. These data are consistent with the notion that these regions of GPIIIa participate in the conformational change associated with receptor activation. Additionally, these studies may provide a molecular explanation for the previously reported ability of mild reducing agents to activate the GPIIb-IIIa complex and promote platelet aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.