Abstract

Target DNA binding by the Mu B protein is an important step in phage Mu transposition; however, the region of Mu B involved in target binding and the mechanism of the interaction are unknown. Previous studies have demonstrated that modification of Mu B with the sulfhydryl-specific reagent N-ethylmaleimide can selectively inhibit target DNA binding. We now show that individual mutation of the three cysteines in Mu B to serine results in proteins which are active in intermolecular strand transfer, but demonstrate variable levels of N-ethylmaleimide resistance. The data indicate that cysteine 99 is the primary site of modification affecting target DNA binding, with a minor contribution resulting from the derivitization of cysteine 129. These findings are confirmed by the construction of Mu B mutants containing a bulky side-chain at the individual cysteine to mimic the N-ethylmaleimide modified protein. The C99Y protein shows a complete loss in target-dependent strand transfer activity under standard reaction conditions and C129Y displays partial activity. The effect of the tyrosine substitutions is specific for target interaction as both mutants show wild-type activity in their ability to stimulate the Mu transposase to perform donor cleavage and intramolecular strand transfer. Finally, a target dissociation assay has shown that the C99Y-DNA complex generated in the presence of ATP-γ-S has a drastically reduced half-life as previously found for N-ethylmaleimide treated wild-type Mu B. Modification of cysteine 99 is proposed to block target DNA binding by causing steric interference near the DNA binding pocket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.