Abstract

Small RNAs (sRNAs) regulate diverse pathways, including stress responses, virulence, and metabolism in Escherichia coli. At the center of this large sRNA regulatory network is the Hfq protein. Hfq mediates the binding of sRNAs to their target mRNAs; without Hfq, most sRNAs cannot efficiently regulate target mRNA expression. Here, we show in vivo that Hfq can be a limiting factor for sRNA activity and that it can be easily depleted, causing disruption of the sRNA network. Depletion of the available Hfq can occur when sRNAs and target mRNAs are transcribed at high levels without their partners, resulting in the sequestration of Hfq into sRNA-Hfq and target mRNA-Hfq complexes. This can be avoided by coordinating the transcription of sRNAs with their target mRNAs so that they are turned on and off together to maximize duplex formation and minimize Hfq sequestration. Therefore, the limited availability of Hfq results in a highly interdependent sRNA network, wherein the activity of each sRNA depends on the activity of the other sRNAs and target mRNAs in the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.