Abstract

By in silicio analysis, we have discovered that there are seven open reading frames (ORFs) in Saccharomyces cerevisiae whose protein products show a high degree of amino acid sequence similarity to the aryl alcohol dehydrogenase (AAD) of the lignin-degrading fungus Phanerochaete chrysosporium. Yeast cultures grown to stationary phase display a significant aryl alcohol dehydrogenase activity by degrading aromatic aldehydes to the corresponding alcohols. To study the biochemical and the biological role of each of the AAD genes, a series of mutant strains carrying deletion of one or more of the AAD-coding sequences was constructed by PCR-mediated gene replacement, using the readily selectable marker kanMX. The correct targeting of the PCR-generated disruption cassette into the genomic locus was verified by analytical PCR and by pulse-field gel electrophoresis (PFGE) followed by Southern blot analysis. Double, triple and quadruple mutant strains were obtained by classical genetic methods, while the construction of the quintuple, sextuple and septuple mutants was achieved by using the marker URA3 from Kluyveromyces lactis, HIS3 from Schizosaccharomyces pombe and TRP1 from S. cerevisiae. None of the knock-out strains revealed any mutant phenotype when tested for the degradation of aromatic aldehydes using both spectrophotometry and high performance liquid chromatography (HPLC). Specific tests for changes in the ergosterol and phospholipids profiles did not reveal any mutant phenotype and mating and sporulation efficiencies were not affected in the septuple deletant. Compared to the wild-type strain, the septuple deletant showed an increased resistance to the anisaldehyde, but there is a possibility that the nutritional markers used for gene replacement are causing this effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.