Abstract
Circletail is one of only two mouse mutants that exhibit the most severe form of neural tube defect (NTD), termed craniorachischisis. In this disorder, almost the entire brain and spinal cord is affected, owing to a failure to initiate neural tube closure. Craniorachischisis is a significant cause of lethality in humans, yet the molecular mechanisms involved remain poorly understood. Here, we report the identification of the gene mutated in circletail (Crc), using a positional cloning approach. This gene, Scrb1, encodes a member of the LAP protein family related to Drosophila scribble, with 16 leucine rich repeats and four PDZ domains. The Crc mutant contains a single base insertion that creates a frame shift and leads to premature termination of the Scrb1 protein. We report the expression pattern of Scrb1 during embryonic and fetal development, and show that Scrb1 expression closely mirrors the phenotypic defects observed in Crc/Crc mutants. In addition, circletail genetically interacts with the loop-tail mutant, and we reveal overlapping expression of Scrb1 with Vangl2, the gene mutated in loop-tail. The identification of the Crc gene further defines the nature of the genetic pathway required for the initiation of neural tube closure and provides an important new candidate that may be implicated in the aetiology of human NTDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.