Abstract

Post-synaptic density protein 95 (PSD95) contains three PSD95/Dosophilia disc large/ZO-1 homology domains and links neuronal nitric oxide synthase (nNOS) with the N-methyl-D-aspartic acid (NMDA) receptor. This report assesses the effects of disruption of the protein-protein interaction between nNOS and PSD95 on pain sensitivity in rodent models of hyperalgesia and neuropathic pain. We generated two molecules that interfered with the nNOS-PSD95 interaction: IC87201, a small molecule inhibitor; and tat-nNOS (residues 1-299), a cell permeable fusion protein containing the PSD95 binding domain of nNOS. We then characterized these inhibitors using in vitro and in vivo models of acute hyperalgesia and chronic allodynia, both of which are thought to require nNOS activation. IC87201 and tat-nNOS (1-299) inhibited the in vitro binding of nNOS with PSD95, without inhibiting nNOS catalytic activity. Both inhibitors also blocked NMDA-induced 3',5'-cyclic guanosine monophosphate (cGMP) production in primary hippocampal cultures. Intrathecal administration of either inhibitor potently reversed NMDA-induced thermal hyperalgesia in mice. At anti-hyperalgesic doses, there was no effect on acute pain thresholds or motor coordination. Intrathecal administration of IC87201 and tat-nNOS also reversed mechanical allodynia induced by chronic constriction of the sciatic nerve. nNOS-PSD95 interaction is important in maintaining hypersensitivity in acute and chronic pain. Disruption of the nNOS-PSD95 interaction provides a novel approach to obtain selective anti-hyperalgesic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.