Abstract

Menadione, also known as vitamin K3, is a 2-methyl-1,4 naphthoquinone with a potent cytotoxic activity mainly resulting from its quinone redox-cycling with production of reactive oxygen species (ROS). Although increased ROS generation is considered a relevant mechanism in cancer cell death, it may not be sufficiently effective to kill cancer cells due to phenotypic adaptations. Therefore, combining ROS-generating agents with other molecules targeting important cancer cell phenotypes can be an effective therapeutic strategy. As mitochondrial dysfunction has been implicated in many human diseases, including cancer, we describe here the discovery of a mitochondrial-directed agent (MitoK3), which was developed by conjugating a TPP cation to the C3 position of the menadione’s naphthoquinone ring, increasing its selective accumulation in mitochondria, as well as led to alterations of its redox properties and consequent biological outcome. MitoK3 disturbed the mitochondrial bioenergetic apparatus, with subsequent loss of mitochondrial ATP production. The combinatory strategy of MitoK3 with anticancer agent doxorubicin (DOX) resulted in a degree of cytotoxicity higher than those of the individual molecules, as the combination triggered tumour apoptotic cell death evident by caspase 3/9 activities, probably through mitochondrial destabilization or by interference with mitochondrial redox processes. The results of this investigation support the importance of drug discovery process in developing molecules that can be use as adjuvant therapy in patients with specific cancer subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.