Abstract

Genomic analysis of a classically derived L-lysine-producing mutant, Corynebacterium glutamicum B-6, identified a nonsense mutation in the mqo gene, which encodes malate:quinone oxidoreductase (MQO). The effect of mqo disruption on L-lysine production was investigated in a defined L-lysine producer, C. glutamicum AHP-3, showing approximately 18% increased production. To explore the underlying mechanisms of the increase, the mqo-disrupted strain was analyzed from the viewpoints of redox balance, activities of membrane-bound dehydrogenases, and transcriptome. The intracellular [NADH]/[NAD] ratio in the strain remained unchanged. Also, there were no significant differences in the activities of the membrane-bound dehydrogenases examined. However, transcriptome analysis showed that some TCA cycle genes, such as acn, sucC, and sucD, were down-regulated in the strain. These results suggest that the loss of MQO activity down-regulates the flux of the TCA cycle to maintain the redox balance and results in redirection of oxaloacetate into L-lysine biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.