Abstract

Disruption of leptin signalling has been implicated as playing a role in the development of Alzheimer's disease (AD). Leptin has previously been shown to be affected by amyloid-beta (Aβ)-related signalling; however, pathways that link leptin to the disease pathogenesis have not been determined. To characterize the association between increasing age-dependent Aβ levels with leptin signalling and the vulnerable brain regions in AD, we assessed the mRNA and protein expression profile of leptin and leptin receptor (Ob-Rb) at 9 and 18-month-age in APP/PS1 mice. Immunohistochemical labelling demonstrated that leptin and Ob-Rb proteins were localised to neocortical and hippocampal neurons in APP/PS1 and wildtype (WT) mice. Neuronal leptin and Ob-Rb immunolabelling was more prominent in the neocortex of both groups at 9month of age, while, at 18months, labelling was reduced in the hippocampus of APP/PS1 mice relative to WT. Immunoblotting analysis demonstrated decreased hippocampal leptin levels, concomitantly with an increased Ob-Rb levels, in APP/PS1 mice compared with WT controls at 18month of age. While no leptin mRNA was found in either of the groups analysed, Ob-Rb mRNA was significantly decreased in the hippocampus of APP/PS1 mice at both ages analysed. In addition, a significant decreased protein kinase B (Akt) activity concomitantly with an upregulation of suppressor of cytokine signaling-3 (SOCS3) and protein-tyrosine phosphatase 1B (PTP1B) transcripts was present. Thus, these results collectively indicate alterations of leptin signalling in the hippocampus of APP/PS1 mice, providing novel insights about the pathways that could link aberrant leptin signaling to the pathological changes of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call