Abstract

Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase (PTK) which acts as an early modulator in the integrin signaling cascade. FAK phosphorylation and its consequent activation regulate several basic biological cellular functions. On the contrary, dysregulation of FAK signaling is implicated in the malignant transformation of cells, as well as in nonmalignant pathological conditions. With respect to cytotoxicity, accumulating data indicate that FAK participates in the mechanism of action of the known cytotoxic reactive oxygen species (ROS). Additionally, evidence was presented that different cytotoxic substances, such as arsenic (As), lead (Pb), acrylamide, methylisothiazolinone (MIT), dichlorovinylcysteine (DCVC) and halothane, acted, at least in part, by downregulating FAK tyrosine phosphorylation, while the bacterial toxins Pasteurella multocida toxin and Escherichia coli cytotoxic necrotizing factor, have been shown to exert cytotoxic effects by inducing FAK tyrosine phosphorylation. The observation that upregulation as well as downregulation of FAK activity both result in cytotoxic effects seems contradictory. Even though a common mode of action, with respect to the dysregulation of FAK signaling, for these cytotoxic substances has not yet been discovered, a cumulative approach could be established by focusing on FAK activation and signaling cascade. According to these data, interfering with FAK signaling might be of a potential use in blocking these cytotoxic effects. Further studies are needed on the possible implication of FAK in substance-induced cytotoxicity, as well as the possibility that such effects might be hindered or even blocked by restoring FAK signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.