Abstract

Antimicrobial peptides (AMPs) are increasingly explored as therapeutics for drug-resistant and biofilm-related infections to help expand the size and quality of the current antibiotic pipeline in the face of mounting antimicrobial resistance. Here, synthetic peptides rationally designed based upon principles governing the folding of natural α-helical AMPs, comprising the backbone sequence (X1Y1Y2X2)n, and which assemble into α-helical structures with idealized facial amphiphilicity, is presented. These multifunctional peptide amphiphiles demonstrate high bacterial selectivity, promote the disruption of pre-formed drug-resistant biofilms, and effectively neutralize endotoxins at low micromolar concentrations. Overall, the design strategies presented here could provide a useful tool for developing therapeutic peptides with broad-ranging clinical applications from the treatment and prevention of drug-resistant biofilms to the neutralization of bacterial endotoxins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call