Abstract
In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed–Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein–Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere–TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere–TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called ‘ghost’ end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere–TRF2 interaction in the formation of RS cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.