Abstract

Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.