Abstract

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a "weakest-link" approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them.IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.

Highlights

  • A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy

  • Recent data have challenged the utility of antibiotic susceptibility testing (AST) for cystic fibrosis (CF) and other chronic polymicrobial infections by showing no association between the in vitro antibiotic susceptibility of a pathogen and the clinical response of its host [1,2,3,4]

  • Many patients are unresponsive to antibiotics targeted at canonical pathogens (e.g., Pseudomonas aeruginosa) cultured from clinical samples, while others respond positively to therapies predicted to fail by AST

Read more

Summary

Introduction

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Many patients are unresponsive to antibiotics targeted at canonical pathogens (e.g., Pseudomonas aeruginosa) cultured from clinical samples, while others respond positively to therapies predicted to fail by AST. To test the weakest-link approach in a clinically relevant context, we collected sputa from CF patients and isolated P. aeruginosa from each sample (Fig. 1b).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call