Abstract

Diabetes will lead to serious complications, of which atherosclerosis is the most dangerous. This study aimed to explore the mechanisms of diabetic atherosclerosis. ApoE-/- mice were fed with an high-fat diet diet and injected with streptozotocin to establish an in vivo diabetic atherosclerotic model. RAW 264.7 cells were treated with oxidized low-density lipoprotein particles (ox-LDL) and high glucose to produce an in vitro diabetic atherosclerotic model. In this study, we showed that diabetes promoted the progression of atherosclerosis in ApoE-/- mice and that high glucose potentiates macrophage proinflammatory activation and foam cell formation. Mechanistically, Copper metabolism MURR1 domain-containing 1(COMMD1) deficiency increased proinflammatory activation and foam cell formation, characterized by increased glycolysis, and then accelerated the process of atherosclerosis. Furthermore, 2-Deoxy-D-glucose (2-DG) reversed this effect. Taken together, we provided evidence that the lack of COMMD1 accelerates diabetic atherosclerosis via mediating the metabolic reprogramming of macrophages. Our study provides evidence of a protective role for COMMD1 and establishes COMMD1 as a potential therapeutic strategy in patients with diabetic atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.