Abstract

Yellow-green variegation leaf phenotype adds more value to ornamental plants, but it is regarded as an undesirable trait in crop plants, affecting their yields. Until recently, the underlying mechanism regulating the yellow-green variegation phenotype has remained largely unexplored in soybean. In the present study, we indentified four Glycine max leaf yellow/green variegation mutants, Gmvar1, Gmvar2, Gmvar3, and Gmvar4, from artificial mutagenesis populations. Map-based cloning, together with the allelic identification test and CRISPR-based gene knockout, proved that mutated GmCS1 controls yellow-green variegation phenotype of the Gmvar mutants. GmCS1 encodes a chorismate synthase in soybean. The content of Phe, Tyr, and Trp were dramatically decreased in Gmcs1 mutants. Exogenous supply of three aromatic amino acid mixtures, or only Phe to Gmvar mutants, leads to recovery of the mutant phenotype. The various biological processes and signalling pathways related to metabolism and biosynthesis were altered in Gmvar mutants. Collectively, our findings provide new insights about the molecular regulatory network of yellow-green variegation leaf phenotype in soybean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.