Abstract
Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) is a common cellular mechanism to limit protein synthesis in stress conditions. Baculovirus PK2, which resembles the C-terminal half of a protein kinase domain, was found to inhibit both human and yeast eIF2alpha kinases. Insect cells infected with wild-type, but not pk2-deleted, baculovirus exhibited reduced eIF2alpha phosphorylation and increased translational activity. The negative regulatory effect of human protein kinase RNA-regulated (PKR), an eIF2alpha kinase, on virus production was counteracted by PK2, indicating that baculoviruses have evolved a unique strategy for disrupting a host stress response. PK2 was found in complex with PKR and blocked kinase autophosphorylation in vivo, suggesting a mechanism of kinase inhibition mediated by interaction between truncated and intact kinase domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.