Abstract

The farnesoid X receptor (FXR) signaling pathway regulates bile acid and cholesterol homeostasis. Here, we demonstrate, using a variety of gain- and loss-of-function approaches, a role of FXR in the process of cell motility, which involves the small heterodimeric partner (SHP)-dependent up-regulation of matrix metalloproteinase-9. We use this observation to reveal a transcriptional regulatory mechanism involving the SP/KLF transcription factors, SP2 and KLF6. Small interference RNA-based silencing studies in combination with promoter, gel shift, and chromatin immunoprecipitation assays indicate that SP2 and KLF6 bind to the matrix metalloproteinase-9 promoter and together function to maintain this gene in a silenced state. However, upon activation of FXR, SHP interacts with SP2 and KLF6, disrupting the SP2/KLF6 repressor complex. Thus, together, these studies identify a mechanism for antagonizing Sp/KLF protein repression function via SHP, with this process regulating endothelial cell motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.