Abstract

BackgroundMitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.ResultsIn this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs.ConclusionsBased on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+]c. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.

Highlights

  • Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells

  • After root hairs were incubated in 10 μM Rhod-2, and [free Ca2+ concentration in mitochondria (Ca2+]m) was calculated based on the fluorescence density value of Rhod-2

  • In most of the mitochondria, [Ca2+]m varied from 230 nM to 800 nM, and in a small number, [Ca2+]m reached 1 μM. [Ca2+]m was unequal in different areas

Read more

Summary

Introduction

Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. We designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs. The actin cytoskeleton is a dynamic structure that participates in many cellular functions including the maintenance of cell polarity and morphology, intracellular trafficking of organelles, cell motility, and cell division [1,2,3,4]. Latrunculins (Lat) and jasplakinolide (Jas) were used often in recent years to disrupt or stabilize actin filaments, which change the structure of the actin cytoskeleton immediately [11,12]. Jas can disrupt actin filaments in vivo and induce the monomeric actin to polymerize into amorphous masses [13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call