Abstract

BackgroundIn filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production.ResultsIn this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production.ConclusionA putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.

Highlights

  • In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins

  • Homologues of the three genes identified in S. cerevisiae as being involved in citrate or citrate-intermediate transport, CTP1, YHM2 and OAC1 were identified by BLAST analysis in the genome of the most well characterized black Aspergillus genome, A. niger NRRL3 [27]

  • In order to confirm the expression of the mtpA gene in A. carbonarius, transcriptional analysis was carried out using reverse transcription polymerase chain reaction (RT-Polymerase chain reaction (PCR))

Read more

Summary

Introduction

Transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. When several genetic modifications were made to improve carbon flux towards dicarboxylic acid production (fumaric, succinic and malic acid), an increased production of citric acid was often observed [2,3,4]. This phenomenon might be a result of the transport of organic acids across the mitochondrial membrane where e.g. malic acid is transported to the mitochondria in exchange with citric acid. Overexpression of the transporter led to a significant increase of C4-dicarboxylic acid production and decreased citric acid production

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call