Abstract

Transient global amnesia is characterized by the sudden apparition of severe episodic amnesia, mainly anterograde, associated with emotional changes. Even though the symptoms are stereotyped, cerebral mechanism underlying transient global amnesia remains unexplained and previous studies using positron emission tomography do not show any clear results or consensus on cerebral regions impacted during transient global amnesia. This study included a group of 10 transient global amnesic patients who underwent 18F-fluorodeoxyglucose positron emission tomography during the acute or recovery phase of the episode and 10 paired healthy controls. Episodic memory was evaluated with the encoding-storage-retrieval paradigm and a story recall test of the Wechsler's memory scale and anxiety was assessed with the Spielberger scale. We used statistical parametric mapping to identify modifications of whole-brain metabolism. Regarding hypometabolism, there was no brain region systematically affected in all transient global amnesic patients and the comparison between amnesic patients and controls did not show any significant differences. To better understand the specific implication of the limbic circuit in the pathophysiology of transient global amnesia, we then conducted a correlational analysis that included regions of this network. Our findings showed that in healthy controls, regions of the limbic circuit seem to operate in a synchronized way with all regions being highly correlated to each other. On the opposite, in transient global amnesic patients, we observed a clear disruption of this normal correlational patterns between regions with the medial temporal lobe (the hippocampus, parahippocampal gyrus and amygdala) included in one cluster and the orbitofrontal cortex, anterior and posterior cingulate gyrus and thalamus gathered in the other one. Given the individual variability in the time course of transient global amnesia, the direct comparison between a group of patients and controls does not seem to favour the identification of subtle and transient alterations in regional metabolism. The involvement of an extended network, such as the limbic circuit, seems more likely to explain the symptoms of patients. Indeed, the synchronization of regions within the limbic circuit seems to be altered during transient global amnesia, which could explain the amnesia and anxiety observed in transient global amnesic patients. The present study thus deepens our understanding of the mechanisms underlying not only amnesia but also the emotional component of transient global amnesia by considering it as a disruption in the normal correlational patterns within the limbic circuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.