Abstract
Before (2019), during (2020), and after (2021) the COVID-19 outbreak, different response methods and measures were taken on campuses to control the spread of COVID-19 within schools. These response methods may have changed the outdoor bioaerosol characteristics, which may affect staff and student health. Therefore, we analyzed the bacterial concentrations, particle size distribution, microbial populations, exposure risks, and environmental influences of bioaerosols at a campus before, during, and after the COVID-19 outbreak. This study used eight-stage Andersen samplers to collect and analyze culturable bacteria in bioaerosols from various locations, high-throughput sequencing to analyze microbial species, principal component analysis to compare differences in samples, RDA to investigate the effects of environmental factors on bioaerosols, and hazard quotient (HQ) and BugBase to evaluate human health risks. The study findings revealed that average bacterial concentrations before, during, and after COVID-19 were 75 CFU m-3, 136 CFU m-3, and 78 CFU m-3, respectively. Moreover, the average percentage of bacteria attached to PM2.5 was 49.2%, 42.7%, and 29.9%, respectively. High-throughput sequencing revealed that species composition changed significantly during the three years of COVID-19. The proportion of Pantoea and Bacillus increased with the development of COVID-19 and these became the dominant strains after COVID-19, whereas Pseudomonas had the maximum proportion during COVID-19. Both risk assessment and BugBase phenotype prediction results indicated that the potential pathogenic risk was the highest in the outdoor environment of the campus during COVID-19 and that bioaerosol contamination was the most severe compared to the outdoor bioaerosol characteristics of the campus recovered after COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.