Abstract

CRISPR-Cas9 is currently the most versatile technique to perform gene editing in living organisms. In this approach, the Cas9 endonuclease is guided toward its DNA target sequence by the guide RNA (gRNA). Chemical synthesis of a functional single gRNA (sgRNA) is nontrivial because of the length of the RNA strand. Recently we demonstrated that a sgRNA can be stitched together from three smaller fragments through a copper-catalyzed azide-alkyne cycloaddition, making the process highly modular. Here we further advance this approach by leveraging this modulator platform by incorporating chemically modified nucleotides at both ends of the modular sgRNA to increase resistance against ribonucleases. Modified nucleotides consisted of a 2'-O-Me group and a phosphorothioate backbone in varying number at both the 5'- and 3'-ends of the sgRNA. It was observed that three modified nucleotides at both ends of the sgRNA significantly increased the success of Cas9 in knocking out a gene of interest. Using these chemically stabilized sgRNAs facilitates multigene editing at the protein level, as demonstrated by successful knockout of both Siglec-3 and Siglec-7 using two fluorophores in conjunction with fluorescence-activated cell sorting. These results demonstrate the versatility of this modular platform for assembling sgRNAs from small, chemically modified strands to simultaneously disrupt the gene expression of two proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.