Abstract

Over the past few decades, the hazards associated with the extensive use of organictin compounds have become an issue of extreme concern, while at present the effects of these substances on amphibians remain poorly understood. In the present study, we chose azocyclotin, one of common use acaricides in China. We focused on sexual development and steroidogenesis disrupting effects of azocyclotin in the Xenopus laevis. Tadpoles were exposed to azocyclotin (0.05 and 0.5μg/L) for long-term (4 months) study. Results showed that exposure to azocyclotin caused developmental toxicity, including decreased survival, body weight, body length, gonadosomatic index, hepatosomatic index and female phenotype. At the same time, statistical increase in mean age at completion of metamorphosis was observed in azocyclotin treatments in comparison with control group. Furthermore, hormone concentrations, and steroidogenesis genes expression of adult frog were further evaluated in 28 days exposure. Results demonstrated that the key regulating hormones, e.g. testosterone and pregnenolone, were significantly upregulated. The expression levels of selected steroidogenic genes were also significantly altered. Our study demonstrated that azocyclotin could delay the metamorphosis and disrupt the gonadal differentiation of X. laevis. Steroidogenesis and the expression of genes involved in the hypothalamus-pituitary-gonadal-liver axis in frogs were disrupted after azocyclotin exposure. Azocyclotin showed both androgenic and antiestrogenic activity for X. laevis. Those findings emphasized the influence of azocyclotin on non-target species in the context of ecotoxicological risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.