Abstract

Convolutional Neural Network (DCNN), with its great performance, has attracted attention of researchers from many disciplines. The studies of the DCNN and that of biological neural systems have inspired each other reciprocally. The brain-inspired neural networks not only achieve great performance but also serve as a computational model of biological neural systems. Here in this study, we trained and tested several typical DCNNs (AlexNet, VGG11, VGG13, VGG16, DenseNet, MobileNet, and EfficientNet) with a face ethnicity categorization task for experiment 1, and an emotion categorization task for experiment 2. We measured the performance of DCNNs by testing them with original and lossy visual inputs (various kinds of image occlusion) and compared their performance with human participants. Moreover, the class activation map (CAM) method allowed us to visualize the foci of the "attention" of these DCNNs. The results suggested that the VGG13 performed the best: Its performance closely resembled human participants in terms of psychophysics measurements, it utilized similar areas of visual inputs as humans, and it had the most consistent performance with inputs having various kinds of impairments. In general, we examined the processing mechanism of DCNNs using a new paradigm and found that VGG13 might be the most human-like DCNN in this task. This study also highlighted a possible paradigm to study and develop DCNNs using human perception as a benchmark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.