Abstract

Neuroimaging studies suggest that treatment-naive depression (TD) is characterized by abnormal functional connectivity between specific brain regions. However, the question surrounding the structural basis of functional aberrations in TD patients still remains. In the present study, diffusion tensor imaging tractography was employed to construct structural connectivity networks in 22 early adult-onset, first-episode TD patients and 19 healthy controls (HC). Graph theory and network-based statistic (NBS) were then employed to investigate systematically the alteration of whole brain structural topological organization and structural connectivity in TD patients. Graph theoretical analysis revealed that, compared with HC, TD patients exhibited altered structural topological measures, including decreased shortest path length, normalized clustering coefficient, normalized shortest path length, and small-worldness, as well as increased global and local efficiency. NBS results further revealed that TD patients showed two altered structural sub-networks. One sub-network mainly involved connections between the right orbitofrontal cortex (OFC) and the right insula, putamen, caudate, hippocampus, fusiform gyrus, inferior temporal gyrus and lingual gyrus. The other sub-network mainly included connections between the left OFC and the left gyrus rectus, insula, putamen, caudate, thalamus, pallidum and middle occipital gyrus. The findings suggest that TD patients exhibit a disruption in the topological organization of structural brain networks. The altered orbitofrontal connectivity may particularly contribute to the manifestation of symptoms in TD patients. The abnormalities may facilitate understanding of the functional disturbances of mood and cognition in the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call