Abstract

Brain signal variability (BSV) has shown to be powerful in characterizing human brain development and neuropsychiatric disorders. Multiscale entropy (MSE) is a novel method for quantifying the variability of brain signal, and helps elucidate complex dynamic pathological mechanisms in children with attention-deficit/hyperactivity disorder (ADHD). Here, multiple-channel resting-state functional near-infrared spectroscopy (fNIRS) imaging data were acquired from 42 children with ADHD and 41 healthy controls (HCs) and then BSV was calculated for each participant based on the MSE analysis. Compared with HCs, ADHD group exhibited reduced BSV in both high-order and primary brain functional networks, e.g., the default mode, frontoparietal, attention and visual networks. Intriguingly, the BSV aberrations negatively correlated with ADHD symptoms in the frontoparietal network and negatively correlated with reaction time variability in the frontoparietal, default mode, somatomotor and attention networks. This study demonstrates a wide alternation in the moment-to-moment variability of spontaneous brain signal in children with ADHD, and highlights the potential for using MSE metric as a disease biomarker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call