Abstract
Diffuse axonal injury (DAI) disrupts the integrity of white matter microstructure and affects brain functional connectivity, resulting in persistent cognitive, behavioral and affective deficits. Mounting evidence suggests that altered cortical-subcortical connectivity is a major contributor to cognitive dysfunction. The functional integrity of the striatum is particularly vulnerable to DAI, but has received less attention. This study aimed to investigate the alteration patterns of striatal subdivision functional connectivity. Twenty-six patients with DAI and 27 healthy controls underwent resting-state fMRI scans on a 3.0 T scanner. We assessed striatal subdivision functional connectivity using a seed-based analysis in DAI. Furthermore, a partial correlation was used to measure its clinical association. Compared to controls, patients with DAI showed decreased functional connectivity between the right inferior ventral striatum and right inferior frontal gyrus, as well as the right inferior parietal lobule, between the left inferior ventral striatum and right inferior frontal gyrus, between the right superior ventral striatum and bilateral cerebellar posterior lobe, between the bilateral dorsal caudal putamen and right anterior cingulate gyrus, and between the right dorsal caudal putamen and right inferior parietal lobule. Moreover, decreased functional connectivity was observed between the left dorsal caudate and the right cerebellar posterior lobe, while increased functional connectivity was found between the left dorsal caudate and right inferior parietal lobule. Correlation analyses showed that regions with functional connectivity differences in the DAI group correlated with multiple clinical scoring scales, including cognition, motor function, agitated behavior, and anxiety disorders. These findings suggest that abnormalities in cortico-striatal and cerebellar-striatal functional connectivity are observed in patients with DAI, enriching our understanding of the neuropathological mechanisms of post-injury cognitive disorders and providing potential neuroimaging markers for the diagnosis and treatment of DAI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.