Abstract

BackgroundPoly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. PAR is synthesized by Poly(ADP-ribose) polymerase (PARP) and hydrolyzed by Poly(ADP-ribose) glycohydrolase (PARG). In contrast to human and other higher eukaryotes, Trypanosoma brucei contains only one PARP and PARG. Up to date, the function of these enzymes has remained elusive in this parasite. The aim of this work is to unravel the role that PAR plays in genotoxic stress response.MethodsThe optimal conditions for the activity of purified recombinant TbPARP were determined by using a fluorometric activity assay followed by screening of PARP inhibitors. Sensitivity to a genotoxic agent, H2O2, was assessed by counting motile parasites over the total number in a Neubauer chamber, in presence of a potent PARP inhibitor as well as in procyclic transgenic lines which either down-regulate PARP or PARG, or over-express PARP. Triplicates were carried out for each condition tested and data significance was assessed with two-way Anova followed by Bonferroni test. Finally, PAR influence was studied in cell death pathways by flow cytometry.ResultsAbolition of a functional PARP either by using potent inhibitors present or in PARP-silenced parasites had no effect on parasite growth in culture; however, PARP-inhibited and PARP down-regulated parasites presented an increased resistance against H2O2 treatment when compared to their wild type counterparts. PARP over-expressing and PARG-silenced parasites displayed polymer accumulation in the nucleus and, as expected, showed diminished resistance when exposed to the same genotoxic stimulus. Indeed, they suffered a necrotic death pathway, while an apoptosis-like mechanism was observed in control cultures. Surprisingly, PARP migrated to the nucleus and synthesized PAR only after a genomic stress in wild type parasites while PARG occurred always in this organelle.ConclusionsPARP over-expressing and PARG-silenced cells presented PAR accumulation in the nucleus, even in absence of oxidative stress. Procyclic death pathway after genotoxic damage depends on basal nuclear PAR. This evidence demonstrates that the polymer may have a toxic action by itself since the consequences of an exacerbated PARP activity cannot fully explain the increment in sensitivity observed here. Moreover, the unusual localization of PARP and PARG would reveal a novel regulatory mechanism, making them invaluable model systems.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1461-1) contains supplementary material, which is available to authorized users.

Highlights

  • Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function

  • We have identified only one protein that belongs to the Poly(ADP-ribose) glycohydrolase (PARG) family in T. brucei (TbPARG), which expresses in both stages of the parasite (Additional file 4B)

  • When we examined the dynamics of PAR synthesis and degradation in Poly(ADP-ribose) polymerase (PARP)-over expressing or PARG-silenced procyclic forms of T. brucei, we observed a different pattern in the amount of PAR 90 and 120 min after a genotoxic stimulus, compared to wild type cultures (Fig. 5a)

Read more

Summary

Introduction

Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. Poly(ADP-ribose)polymerases (PARPs) catalyze the formation of ADP-ribose polymer chains (PAR) by transferring the ADP-ribose region from NAD+ to certain residues in target proteins or to a nascent chain (PAR). Most of these enzymes typically carry out an auto-modification reaction. The superfamily of human PARP comprises 17 proteins [1] Among the functions they carry out, the participation of human PARP-1 (hPARP-1) in signalling and repair of harmed DNA has been the center of most of the research carried out in the field [2,3,4,5,6,7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call