Abstract

The ring-opening of 2-methylfuran and 2,3-dihydro-5-methylfuran catalyzed by the Lewis acid catalyst tris(pentafluorophenyl)borane in the presence of hydrosilanes was studied using quantum chemical methods. In a previous study, it was suggested that the stereoselective formation of the product is due to a nucleophilic vinylic substitution (SNV) during the reaction. Our calculations show that the pathway involving the SNV reaction is energetically not accessible. Instead, the intramolecular C-O bond cleavage is found to be much more favorable in energy for the ring opening reaction. The experimentally observed excellent stereoselectivity toward the Z-isomer product originates from an intrinsic preference of the furan ring to couple the C-O bond cleavage with a disrotatory motion of the oxygen and carbon fragments. This stereoselective feature is naturally programmed into the furan ring manifold and should be generally exploitable for engineering stereoselective ring-opening processes of bioderived furans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call