Abstract

AbstractComplex transition‐metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition‐metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6, using Zr, yields LaSrCoRuO5. This reduced phase contains an ordered array of apex‐linked square‐based pyramidal Ru3+O5, square‐planar Co1+O4 and octahedral Co3+O6 units, consistent with the coordination‐geometry driven disproportionation of Co2+. Coordination‐geometry driven disproportionation of d7 transition‐metal cations (e.g. Rh2+, Pd3+, Pt3+) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition‐metal such as cobalt leads to the expectation that d7+ Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+O4 and Co3+O6 units in LaSrCoRuO5 is surprising. Low‐temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=1/2 Ru3+ and S=1 Co1+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call