Abstract

1,3-Butadiene (BD), a chemical used extensively in the production of styrene-butadiene rubber, is carcinogenic in Sprague-Dawley rats and B6C3F1 mice. Chronic inhalation studies revealed profound species differences in the potency and organ-site specificity of BD carcinogenesis between rats and mice. BD is a potent carcinogen in mice and a weak carcinogen in rats. Previous studies from our laboratory and others have shown marked differences between rats and mice in the metabolism of BD, which may account for species differences in carcinogenicity. The purpose of the present study was to examine the production and disposition of two mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2), in blood and other tissues of rats and mice during and following inhalation exposures to a target concentration of 62.5 p.p.m. BD. BDO was increased above background in blood, bone marrow, heart, lung, fat, spleen and thymus tissues of mice after 2 h and 4 h exposures to BD. In rats, levels of BDO were increased in blood, fat, spleen and thymus tissues. No increases in BDO were observed in rat lungs. BDO2, the more mutagenic of the two epoxides, was increased in the blood of rats and mice at 2 and 4 h after initiation of exposure to BD. In mice, BDO2 was detected in all tissues examined immediately following the 4 h exposure. This metabolite was detected in heart, lung, fat, spleen and thymus of rats, but at levels 40- to 160-fold lower than those seen in mice. Immediately after the 4 h exposure, blood levels of BDO2 were 204 +/- 15 pmol/g for mice but were 41-fold lower for rats. In the sensitive mouse target organs, heart and lungs, levels of BDO2 exceeded BDO levels immediately after the exposure. This study shows that the levels of BD epoxides are markedly greater in the mouse BD target organs. The high concentrations of BDO2 in these organs suggest that this compound may be particularly important in BD-induced carcinogenesis. Thus, although BD is oxidatively metabolized by similar metabolic pathways in rats and mice, the substantial quantitative differences in tissue levels of mutagenic epoxides between species may be responsible for the increased sensitivity of mice to BD-induced carcinogenicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.