Abstract

In vivo detecting of plants signal molecules is of great importance for the precision farming, crop management and plant phenotyping. In this work, for in vivo detecting indole-3-acetic acid (IAA), one of phytohormones, fine stainless steel (SS) wire was used as electrode material. Highly ordered nanopores, popcorn-like Au nanostructures, Pt nanoparticles and reduced graphene oxide (ERGO) nanocomposite films, and polymerized ST film (PST) were fabricated on the SS microelectrode in turn for improving the detection effect. Using the as-prepared SS microelectrode as working electrode, two untreated SS wires as reference electrode and counter electrode respectively, a disposable electrochemical microsensor for IAA were developed. The microsensor exhibited excellent selectivity and high sensitivity with low detection limit (LOD) of 43 pg mL−1. The limit of quantity (LOQ) is 143 pg mL−1. The RSD was 7% for 12 different PST/Pt-ERGO/Au/a-SS microsensors in presence of 100 µg mL−1 IAA. Using this microsensor, IAA of the stem of soybean seedlings was detected in vivo under salt stress. Our result was also confirmed by ultra-performance liquid chromatography-mass spectrum (UPLC-MS). This is the first report for the in vivo detection of IAA in plants using SS-based electrochemical microsensor. Our sensor provides an excellent sensing platform for detecting IAA in plants in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.