Abstract

Lactate serves as a crucial biomarker that indicates sepsis assessment in critically ill patients. A rapid, accurate, and portable analytical device for lactate detection is required. This work developed a stepwise polyurethane-polyaniline-m-phenylenediamine via a layer-by-layer based electrochemical biosensor, using a screen-printed gold electrode for lactate determination in blood samples. The developed lactate biosensor was electrochemically fabricated with layers of m-phenylenediamine, polyaniline, a crosslinking of a small amount of lactate oxidase via glutaraldehyde, and polyurethane as an outer membrane. The lactate determination using amperometry revealed the biosensor's performance with a wide linear range of 0.20-5.0 mmol L-1, a sensitivity of 12.17 ± 0.02 µA·mmol-1·L·cm-2, and a detection limit of 7.9 µmol L-1. The developed biosensor exhibited a fast response time of 5 s, high selectivity, excellent long-term storage stability over 10 weeks, and good reproducibility with 3.74% RSD. Additionally, the determination of lactate in human blood plasma using the developed lactate biosensor was examined. The results were in agreement with the enzymatic colorimetric gold standard method (p > 0.05). Our developed biosensor provides efficiency, reliability, and is a great potential tool for advancing lactate point-of-care testing applications in the early diagnosis of sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call