Abstract

Aspergillus niger is a recognized workhorse used to produce food processing enzymes because of its extraordinarily high protein-producing capacity. We have developed a new cell surface display system de novo in A. niger using expression elements from generally recognized as safe certified microorganisms. Candida antarctica lipase B (CALB), a widely used hydrolase, was fused to an endogenous cell wall mannoprotein, CwpA, and functionally displayed on the cell surface. Localization of CALB was confirmed by enzymatic assay and immunofluorescence analysis using laser scanning confocal microscopy. After induction by maltose for 45h, the hydrolytic activity and synthesis activity of A. niger mycelium-surface displayed CALB (AN-CALB) reached 400 and 240U/g dry cell, respectively. AN-CALB was successfully used as a whole-cell catalyst for the enzymatic production of ethyl esters from a series of fatty acids of different chain lengths and ethanol. In a solvent-free system, AN-CALB showed great synthetic activity and afforded high substrate mole conversions, which amounted to 87% for ethyl hexanoate after 2h, 89% for ethyl laurate after 2h, and 84% for ethyl stearate after 3h. These results suggested that CwpA can act as an efficient anchoring motif for displaying enzyme on A. niger, and AN-CALB is a robust, green, and cost-effective alternative food-grade whole-cell catalyst to commercial lipase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call