Abstract


 
 
 The localized settlement of columns in large metal industrial buildings induces out-of-plane displacements of side walls of the same order as the settlement, which may affect service conditions in the building. For a structural configuration formed by frames, side-walls and wall-girts, this work reports results from testing a small-scale model together with computational modelling of the full-scale structure. Dimensional analysis was used to scale the geometry and properties from full-scale to small-scale, leading to an overall scale factor of 1:15. Differential settlements having a controlled amplitude were imposed at the central column, and displacements were monitored using mechanical devices. The computational model employed shell elements for side-walls and wall- girts. Good agreement was found between tests and computer modelling. The results at the full- scale level, indicate that, for settlements likely to occur in granular soils, the associated lateral displacements exceed those allowed by current US regulations. Stiffening the structure was investigated by use of stiffer girts, as well as by reducing their spacing. The influence of frame height was also investigated. The overall conclusion is that out-of-plane displacements of side- walls may easily exceed allowable values unless they are specifically considered at a design stage.
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.